ACDLFN JN]KJN]LFN Ekdnsl mnrl Fce`uedsl mne Mls`uedsl N. XKRE\N]NNE MNE EKDNWLE\N Xkrontlfne gcetco-gcetco fnaljnt bkrlfut lel. >. Wkbuno skdl kjpnt jkjpueynl kjpnt slsl. 2. Lbu Fctn prcvlesl nwn ]kedno nmnano Wkjnrned. 7. 2 furned mnrl 4. Fltn mnpnt jkeketufne elanl fkbkenrne bkenr ntnu snano mnrl fnaljnt- fnaljnt tkrskbut. Fnaljnt-fnaljnt > mne 2 bkrelanl bkenr, skmnedfne fnaljnt-fnaljnt 7 mne = bkrelanl snano. Fnaljnt yned jkjpueynl elanl bkenr sn`n ntnu elanl snano sn`n nmnano fnaljnt yned jkekrnedfne fnaljnt mkfanrntli. Fnaljnt yned jkekrnedfne lelano yned mlskbut pkreyntnne . Fnaljnt yned tlmnf mnpnt mltketufne elanl fkbkenrneeyn bufne jkrupnfne pkreyntnne. Gcetco-gcetco bkrlfut lel nmnano fnaljnt yned bufne pkreyntnne. >. Npnfno Wltl bkrnmn ml rujnoju3 fnaljnt tneyn . 2. Nanedfno lemnoeyn auflsne lel fnaljnt yned jkeduedfnpfne suntu pkrnsnne . 7. ]utupano pletu ltu! fnaljnt pkrletno . =. Wkjcdn Nemn akfns skjbuo fnaljnt onrnpne . Fnaljnt-fnaljnt tkrskbut tlmnf bkrelanl bkenr mne `udn tlmnf bkrelanl snano. Fnaljnt-fnaljnt, skpkrtl lel tlmnf mlblgnrnfne mnanj jcmua lel. Fnaljnt yned mlblgnrnfne mnanj jcmua lel nmnano fnaljnt yned jkrupnfne pkreyntnne. Wkane`uteyn, uetuf jkeyledfnt pkeualsne, suntu pkreyntnne mlbkrl anjbned sljbca mkedne ourui nainbkt fkgla, ynltu n, b, g, ... ntnu anleeyn skmnedfne uetuf elanl Bkenr mne Wnano bkrturut-turut mlsledfnt mkedne B mne W. Gcetco >.>. >. ‑Wkbuno skdltldn jkjpueynl tldn slsl‚ mlbkrl anjbned ‑n‚. 2. ‑; tkrbndl onbls cako 7‚ mlbkrl anjbned ‑p‚. Xnmn gcetco lel, pkreyntnne n bkrelanl B bkenr, pkreyntnne b bkrelanl W snano mne pkreyntnne p bkrelanl B. Xkrontlfne pnmn gcetco 2 tkrskbut, ‑b‚ jkeyntnfne ‑; tkrbndl onbls cako 7‚ jnfn ‑~p‚ jkeyntnfne ‑>; tlmnf tkrbndl onbls cako 7‚. ]njpnf bnown ‑p‚ bkrelanl B mne ‑~p‚ bkrelanl W. Gcetco >.2. >. Npnblan ‑n‚ jkeyntnfne ‑]kjbcf ltu bkrwnren putlo‚ jnfn ‑~n‚ nmnano ‑]kjbcf ltu tlmnf bkrwnren putlo‚. Mnpnt `udn mlfntnfne0 ‑]lmnfano bkenr tkjbcf ltu bkrwnren putlo‚. 2. lfn ‑m‚ jkeyntnfne ‑Lmn sufn jneddn‚ jnfn ‑~m‚ nmnano ‑Lmn tlmnf sufn jneddn‚. 7. lfn ‑p‚ jkanjbnedfne ‑Wltl akblo tleddl mnrlpnmn Nel‚ jnfn ‑~p‚ jkeyntnfne ‑Wltl tlmnf akblo tleddl mnrlpnmn Nel‚. Xnmn gcetco > tkrskbut, pkreyntnne ‑]kjbcf ltu bkrwnren oltnj‚ tlmnf jkrupnfne ledfnrne ekdnsl mnrl ‑]kjbcf ltu bkrwnren putlo‚. Wkbnb npnblan fkeyntnneeyn ‑]kjbcf ltu bkrwnren ol`nu‚ jnfn mun pkreyntnne tkrskbut Xkreyntnne nmnano fnaljnt yned bkrelanl bkenr ntnu bkrelanl snano, tktnpl tlmnf skfnaldus bkrelanl fkmun-muneyn. Ekdnsl suntu pkreyntnne nmnano suntu pkreyntnne yned bkrelanl snano npnblan pkreyntnne skjuan bkrelanl bkenr, mne bkrelanl bkenr npnblan pkreyntnne skjuan bkrelanl snano.
Negasi atau ingkaran dalam bahasan logika matematika memiliki arti lawan atau kebalikan dari pernyataan awal. Nilai kebenaran dari suatu premis dengan ingkaran premis selalu menyatakan hubungan yang berlawanan. Jika suatu premis bernilai benar maka negasi pernyataan majemuk atau premis tersebut bernilai salah. Sebaliknya, jika suatu premis bernilai salah maka negasi pernyataan majemuk atau premis tersebut bernilai benar. Karakteristik dari pernyataan negasi biasanya ditandai dengan penambahan kata bukan atau tidak. Sebagai contoh diberikan sebuah pernyataan Saya bisa mengerjakan semua soal dengan baik. Negasi pernyataan majemuk tersebut adalah Saya tidak bisa mengerjakan semua soal dengan baik. Negasi pernyataan majemuk memiliki bentuk ekuivalen antara satu ekspresi logika dengan bentuk ekspresi logika lainnya. Misalnya negasi pernyataan majemuk dengan konjungsi ~p ∧ q yang ekuivalen dengan ekspresi logika dengan operator disjungsi yaitu ~p ∨ ~q. Negasi pernyataan majemuk dapat diperoleh dari bentuk ingkaran suatu ekspresi logika yang ekuivalen. Apa saja bentuk ekuivalen ekspresi logika dari negasi pernyataan mejamuk? Bagaimana cara menentukan negasi pernyataan majemuk? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Negasi Pernyataan Majemuk dengan Konjungsi Negasi Disjungsi Negasi Implikasi Negasi Biimplikasi Baca Juga 4 Macam Operator Logika Matematika [Konjungsi, Disjungsi, Implikasi, dan Biimplikasi] Negasi Pernyataan Majemuk dengan Konjungsi Pernyataan majemuk dengan konjungsi ditandai dengan adanya kata penghubung dan, tetapi, seandainya, walaupun, seperti, bahwa, serta supaya. Simbol konjungsi dalam penulisan ekspresi logika mengguana tanda ∧ atau &. Nilai kebenaran dari pernyataan majemuk dengan konjungsi hanya akan bernilai benar B jika semua proposisi tunggalnya bernilai benar. Selain itu nilai kebenaran dari pernyataan majemuk dengan konjungsi adalah salah S. Sebagai contoh Jeany adalah siswa yang pintar dan memiliki hobi membaca. Andaikan p = Jeany adalah siswa yang pintar dan q = Jeany memiliki hobi membaca. Penulisan ekspresi logika untuk pernyataan majemuk tersebut adalah p ∧ q atau p & q. Selanjutnya, bagaimana negasi pernyataan majemuk tersebut pada contoh di atas? Apakah cukup menambahkan kata tidak pada kedua proposisi tunggalnya? Sehingga bentuk negasinya menjadi Jeany adalah bukan siswa yang pintar dan Jeany tidak memiliki hobi membaca ~p ∧ ~q? Untuk membuktikannya, perhatikan tabel kebenaran untuk pernyataan majemuk dengan konjungsi dan yang diduga adalah ~p ∧ ~q merupakan bentuk negasinya seperti berikut. Perhatikan nilai kebenaran untuk kolom p ∧ q dan ~p ∧ ~q! Tidak semua baris pada nilai kebenaran pada kedua kolom tersebut memiliki nilai yang berkebalikan. Kesimpulannya adalah negasi dari p ∧ q bukan ~p ∧ ~q. Bentuk negasi yang benar untuk p ∧ q adalah ~p ∧ q yang ekuibalen dengan ekspresi logika ~p ∨ ~q. Perhatikan tabel kebenaran berikut untuk melihat nilai kebenaran dari kedua ekspresi logika tersebut. Pada tabel kebenaran di atas, pada kolom p ∧ q memiliki nilai kebenaran yang saling berlawanan dengan kolom ~p ∧ q dan ~p ∨ ~q . Artinya, bentuk negasi pernyataan majemuk yang sesuai dengan ekspresi logika p ∧ q adalah ~p ∨ ~q. Sehingga, bentuk negasi untuk contoh konjungsi ini menjadi Jeany adalah bukan siswa yang pintar atau Jeany tidak memiliki hobi membaca. Baca Juga Konvers, Invers, dan Kontraposisi dari Suatu Implikasi Negasi Disjungsi Pernyataan majemuk dengan disjungsi ditandai dengan penggunaan kata atau sebagai kata penghubungnya. Simbol disjungsi untuk menghubungkan dua proposisi tunggalnya adalah ∨. Nilai kebenaran dari suatu disjungsi hanya akan bernilai salah S jika semua proposisi tunggalnya bernilai salah, selain itu nilainya adalah benar B. Sebagai contoh sebuah disjungsi Jeany adalah siswa yang pintar atau memiliki hobi membaca. Misalkan p = Jeany adalah siswa yang pintar, sementara q = Jeany memiliki hobi membaca. Ekspresi logika yang sesuai dengan pernyataan majemuk pada contoh tersebut adalah p ∨ q. Bentuk negasi disjungsi merupakan pernyataan dengan konjungsi dari ingkaran kedua proposisi tunggalnya. Sehingga, bentuk negasi untuk pernyataan contoh tersebut adalah Jeany adalah bukan siswa yang pintar dan Jeany tidak memiliki hobi membaca. Kebenaran dari disjungsi dan bentuk negasinya ini dapat dilihat melalui tabel kebenaran berikut. Nilai kebenaran untuk kolom p ∨ q memiliki hubungan yang berlawanan dengan ~p ∨ q dan ~p ∧ ~q. Kesimpulannya, bentuk negasi untuk p ∨ q adalah ~p ∨ q yang ekuivalen dengan bentuk ~p ∧ ~q. Baca Juga Cara Melengkapi Nilai Kebenaran pada Tabel Kebenaran Negasi Implikasi Sebuah implikasi ditandai kata penghubung jika … maka … yang disimbolkan garis lurus dengan sebuah anak panah pada ujung kanan simbol implikasi →. Nilai kebenaran dari suatu implikasi hanya akan bernilai salah S jika anteseden pendahulu bernilai benar dan konsekuen akibat bernilai Salah S. Selain kondisi tersebut, nilai kebenara suatu implikasi adalah Benar B. Contoh pernyataan dengan implikasi Jika Jeany adalah siswa yang pintar maka Jeany memiliki hobi membaca. Andaikan p = Jeany adalah siswa yang pintar dan q = Jeany memiliki hobi membaca. Simbol implikasi yang sesuai untuk pernyataan majemuk tersebut adalah p → q. Tidak sedikit yang mengira bahwa bentuk negasi dari p → q adalah ~p → ~q. Nyatanya, bentuk ~p → ~q merupakan invers dari implikasi p → q. Invers dari suatu implikasi bukan merupakan bentuk negasi dari suatu implikasi. Negasi suatu implikasi berbentuk konjungsi dari anteseden dan ingkaran konsekuen. Untuk suatu implikasi p → q memiliki bentuk negasi ~p → q yang ekuivalen dengan p ∧ ~q. Sehingga, negasi pernyataan majemuk pada contoh tersebut adalah Jeany adalah siswa yang pintar dan Jeany tidak memiliki hobi membaca. Kebenaran dari implikasi dan bentuk negasinya dapat dilihat melalui tabel kebenaran berikut. Berdasarkan tabel kebenaran di atas, semua nilai kebenaran untuk kolom p → q berlawanan dengan ~p → q dan p ∧ ~q. Kesimpulannya, bentuk negasi untuk p → q adalah ~p → q yang ekuivalen dengan bentuk p ∧ ~q. Baca Juga Pernyataan Berkuantor Universal dan Eksistensial Negasi Biimplikasi Dua proposisi tunggal yang dihubungkan oleh kata penghubung jika dan hanya jika atau bila dan hanya bila merupakan biimplikasi. Simbol biimplikasi adalah garis lurus dengan dua buah anak pada kedua ujungnya simbol biimplikasi ↔. Nilai kebenaran dari suatu biimplikasi akan bernilai benar B jika kedua proposisi tunggalnya bernilai sama. Suatu biimplikasi akan bernilai salah S jika proposisi tunggalnya memiliki nilai kebenaran yang berbeda. Contoh biimplikasi Jeany adalah siswa yang pintar jika dan hanya jika Jeany memiliki hobi membaca. Andaikan p = Jeany adalah siswa yang pintar dan q = Jeany memiliki hobi membaca. Simbol biimplikasi yang sesuai untuk pernyataan majemuk pada contoh adalah p ↔ q. Bentuk negasi suatu biimplikasi bukan berupa biimplikasi dari ingkaran kedua proposisi tunggalnya [~p ↔ q bukan ~p ↔ ~q]. Negasi biimplikasi juga bukan dengan menukar posisi anteseden dan konsekuen [~p ↔ q bukan q ↔ p]. Bentuk negasi dari biimplikasi berbentuk disjungsi dari ingkaran sebuah implikasi dan ingkaran konversnya yang memiliki bentuk ekspreso logika ~p → q ∨ ~p → q. Negasi biimplikasi akan ekuivalen juga dengan bentuk disjungsi dari konjungsi anteseden dan ingkaran konsekuen serta konsekuen dan ingkaran anteseden yang sesuai dengan ekspresi logika p ∧ ~q ∨ ~q ∧ ~p. Kebenaran dari biimplikasi dan bentuk negasinya dapat dilihat melalui tabel kebenaran berikut. Baca Juga 3 Metode Penarikan Kesimpulan pada Logika MatematikaPada tabel kebenaran di atas, semua nilai kebenaran untuk kolom p ↔ q dan ~p → q ∨ ~p → q saling berkebalikan. Kesimpulannya, bentuk negasi untuk biimplikasi p ↔ q adalah ~p ↔ q yang ekuivalen dengan bentuk ~p → q ∨ ~p → q. Di mana bentuk ~p → q ∨ ~p → q ekuivalen dengan p ∧ ~q ∨ ~q ∧ ~p. Sehingga, bentuk negasi pernyataan majemuk yang sesuai contoh adalah Jeany adalah siswa yang pintar dan Jenay tidak memiliki hobi membaca atau Jeany memiliki hobi membaca dan Jeany adalah bukan siswa yang pintar. Demikianlah ulasan materi negasi pernyataan majemuk untuk konjungsi, disjungsi, implikasi, dan biimplikasi. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Tautologi, Kontradiksi, dan Kontingensi .
SoalNo. 1 Tentukan negasi dari pernyataan-pernyataan berikut: a) Hari ini Jakarta banjir. b) Kambing bisa terbang. c) Didi anak bodoh d) Siswa-siswi SMANSA memakai baju batik pada hari Rabu. Pembahasan a) Tidak benar bahwa hari ini Jakarta banjir. b) Tidak benar bahwa kambing bisa terbang. c) Tidak benar bahwa Didi anak bodoh
Blog Koma - Setelah mempelajari "pernyataan majemuk yang ekuivalen", pada artikel ini kita lanjutkan dengan pembahasan materi Negasi atau Ingkaran Pernyataan Majemuk yang merupakan submateri dari "logika matematika". "pernyataan majemuk" terdiri dari disjungsi, konjungsi, implikasi, dan biimplikasi. Kita akan mencari semua bentuk Negasi atau Ingkaran Pernyataan Majemuk ini. Untuk memudahkan mempelajari materi Negasi atau Ingkaran Pernyataan Majemuk ini, sebaiknya kita menguasai materi sebelumnya yaitu "negasi atau ingkaran dari suatu pernyataan", "pernyataan berkuantor dan ingkarannya", "pernyataan majemuk", dan "ekuivalensi pernyatan majemuk". Kebanyakan soal-soal yang ada biasanya dalam bentuk kalimat, sehingga kita harus mengubahnya dulu dengan memisalkan dengan huruf-huruf kecil yang mewakili pernyataan-pernyataan tunggal. Berikut materi Negasi atau Ingkaran Pernyataan Majemuk secara detail dan diikuti dengan contohnya. Negasi atau Ingkaran Pernyataan Majemuk Negasi atau ingkaran dari pernyataan majemuk untuk disjungsi, konjungsi, implikasi, dan biimplikasi $ \sim p \wedge q \equiv \sim p \, \vee \sim q $ $ \sim p \vee q \equiv \sim p \, \wedge \sim q $ $ \sim p \Rightarrow q \equiv p \, \wedge \sim q $ $ \sim p \Leftrightarrow q \equiv p \Leftrightarrow \sim q \, $ atau $ \sim p \Leftrightarrow q \equiv \sim p \Leftrightarrow q $ Contoh soal Negasi atau Ingkaran Pernyataan Majemuk 1. Tentukan negasi atau ingkaran pernyataan majemuk berikut ini a. Hari ini hujan atau cuaca cerah. b. Budi lulus SMA dan melanjutkan kuliah kedokteran. c. Jika Iwan ingin menjadi hakim, maka ia harus kuliah jurusan hukum. d. Wati juara kelas jika dan hanya jika wati cerdas. Penyelesaian a. Hari ini hujan atau cuaca cerah. *. Kita ubah menjadi simbol-simbol $\underbrace{\text{hari ini hujan}}_{p} \, \underbrace{\text{atau}}_{\vee} \, \underbrace{\text{cuaca cerah}}_{q} \, \equiv p \vee q $ . Artinya $ p $ mewakili hari ini hujan $ q $ mewakili cuaca cerah. *. Negasi dari $ p \vee q $ $ \sim p \vee q \equiv \sim p \, \wedge \sim q $ Dibaca "hari ini tidak hujan dan cuaca tidak cerah" b. Budi lulus SMA dan melanjutkan kuliah kedokteran. *. Kita ubah menjadi simbol-simbol $\underbrace{\text{Budi lulus SMA}}_{p} \, \underbrace{\text{dan}}_{\wedge} \, \underbrace{\text{melanjutkan kuliah kedokteran}}_{q} \, \equiv p \wedge q $ . Artinya $ p $ mewakili Budi lulus SMA $ q $ mewakili melanjutkan kuliah kedokteran. *. Negasi dari $ p \wedge q $ $ \sim p \wedge q \equiv \sim p \, \vee \sim q $ Dibaca "Budi tidak lulus SMA atau Budi tidak melanjutkan kuliah kedokteran" c. Jika Iwan ingin menjadi hakim, maka ia harus kuliah jurusan hukum. *. Kita ubah menjadi simbol-simbol Jika $\underbrace{\text{Iwan ingin menjadi hakim}}_{p} \, $ maka $ \, \underbrace{\text{ia harus kuliah jurusan hukum}}_{q} \, \equiv p \Rightarrow q $ . Artinya $ p $ mewakili Iwan ingin menjadi hakim $ q $ mewakili ia harus kuliah jurusan hukum. *. Negasi dari $ p \Rightarrow q $ $ \sim p \Rightarrow q \equiv p \, \wedge \sim q $ Dibaca "Iwan ingin menjadi hakim dan ia tidak harus kuliah jurusan hukum " d. Wati juara kelas jika dan hanya jika wati cerdas. *. Kita ubah menjadi simbol-simbol $\underbrace{\text{Wati juara kelas}}_{p} \, $ jika dan hanya jika $ \, \underbrace{\text{wati cerdas}}_{q} \, \equiv p \Leftrightarrow q $ . Artinya $ p $ mewakili Wati juara kelas $ q $ mewakili cuaca cerah. *. Negasi dari $ p \Leftrightarrow q $ $ \sim p \Leftrightarrow q \equiv p \Leftrightarrow \sim q $ Dibaca "Wati juara kelas jika dan hanya jika wati tidak cerdas". atau $ \sim p \Leftrightarrow q \equiv \sim p \Leftrightarrow q $ Dibaca "Wati tidak juara kelas jika dan hanya jika wati cerdas". 2. Tentukan negasi atau ingkaran dari pernyataan majemuk "Jika Intan rajin belajar, maka ia lulus dan mendapat hadiah". Penyelesaian *. Kita ubah menjadi simbol-simbol Jika $\underbrace{\text{Intan rajin belajar}}_{p} \, $ maka $ \, \underbrace{\text{ia lulus}}_{q} \, \underbrace{\text{dan}}_{ \wedge} \, \underbrace{\text{mendapat hadiah}}_{r} \, \equiv p \Rightarrow q \wedge r $ . Artinya $ p $ mewakili Intan rajin belajar $ q $ mewakili ia lulus. $ r $ mewakili mendapat hadiah. *. Negasi dari $ p \Rightarrow q \wedge r $ $ \sim p \Rightarrow q \wedge r \equiv p \, \wedge \sim q \wedge r \equiv p \, \wedge \sim q \vee \sim r $ Dibaca "Intan rajin belajar dan ia tidak lulus atau tidak mendapat hadiah " 3. Tentukan negasi atau ingkaran dari pernyataan majemuk "Hari ini hari senin dan minggu depan bukan hari rabu". Penyelesaian *. Kita ubah menjadi simbol-simbol $\underbrace{\text{Hari ini hari senin}}_{p} \, \underbrace{\text{dan}}_{ \wedge} \, \underbrace{\text{minggu depan bukan hari rabu}}_{\sim q} \, \equiv p \, \wedge \sim q $ . Artinya $ p $ mewakili Hari ini hari senin $ \sim q $ mewakili ia lulus. *. Negasi dari $ p \, \wedge \sim q $ $ \sim p \, \wedge \sim q \equiv \sim p \, \vee \sim \sim q \equiv p \, \vee q $ Dibaca "Hari ini bukan hari senin atau minggu depan hari rabu " 4. Tentukan negasi atau ingkaran dari pernyataan majemuk "Jika Anton cukup umur dan cerdas, maka ia akan menjadi juara olimpiade matematika". Penyelesaian *. Kita ubah menjadi simbol-simbol Jika $\underbrace{\text{Anton cukup umur}}_{p} \, \underbrace{\text{dan}}_{ \wedge} \, \underbrace{\text{Anton cerdas}}_{q} \, $ maka $ \, \underbrace{\text{ia akan menjadi juara olimpiade matematika}}_{r} \, \equiv p \, \wedge q \Rightarrow r $ . Artinya $ p $ mewakili Anton cukup umur $ q $ mewakili Anton cerdas. $ r $ mewakili ia akan menjadi juara olimpiade matematika. *. Negasi dari $ p \, \wedge q \Rightarrow r $ $ \sim p \, \wedge q \Rightarrow r \equiv p \, \wedge q \wedge \sim r $ Dibaca "Anton cukup umur dan cerdas dan ia tidak akan menjadi juara olimpiade matematika ". Demikian pembahasan materi Negasi atau Ingkaran Pernyataan Majemuk dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan logika matematika yaitu "penarikan kesimpulan". 78Gm.